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preclinical AD. The objective of this study was to evaluate whether white matter hyperintensity
(WMH) volume, a cerebrovascular disease marker, is more associated with preclinical AD than con-
ventional AD biomarkers and cognitive tests.
Methods: Elderly controls enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
n 5 158) underwent florbetapir-PET scans, psychometric testing, neuroimaging with MRI and
PET, and APOE genetic testing. Elderly controls the Parkinson’s progression markers initiative
(PPMI, n 5 58) had WMH volume, cerebrospinal fluid (CSF) Ab1–42, and APOE status measured.
Results: In the ADNI cohort, only WMH volume and APOE ε4 status were associated with cerebral
Ab (standardized b5 0.44 and 1.25, P5 .03 and .002). The association between WMH volume and
APOE ε4 status with cerebral Ab (standardized b5 1.12 and 0.26, P5 .048 and .045) was confirmed
in the PPMI cohort.
Discussion: WMHvolume is more highly associated with preclinical AD than other AD biomarkers.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Owing to the recent failures of several clinical trials in
treating symptomatic Alzheimer’s disease (AD) [1], focus
in therapeutic trials is shifting from reversing the effects of
AD to preventing cognitive decline due to AD at the preclin-
ical stage, before any noticeable cognitive change has
occurred [2]. Preclinical AD is defined based on the presence
of cerebral amyloidosis, detected by either amyloid PET
or measurement of cerebrospinal Ab1–42 [3]. We focus
here on preclinical AD, which is simply defined as presence
of cerebral Ab [3]. Presence of preclinical AD does not
imer’s Association. This is an open access article under the CC BY-NC-ND
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necessarily imply that clinical ADwill result but does appear
to come with a higher risk of developing clinical AD [4].
Because of the importance of preclinical AD, an accurate
and thorough understanding of the cognitive and brain
changes at this stage is critical. Furthermore, predictors of
preclinical AD are potentially valuable in the context of clin-
ical trials to enrich populations before the use of more
expensive or invasive amyloid measurement.

Within cognitively normal older adults, two predictors of
amyloid status have already been relatively well established:
age and apolipoprotein E (APOE) status [5,6]. Beyond these
risks, it is possible that other neurodegenerative biomarkers
and cognitive changes that presumptively represent the
downstream effect of the presence of cerebral Ab, such as
hippocampal atrophy, hypometabolism, and subjective
cognitive impairment, may also be sensitive to preclinical
AD [7–9]. Although these markers clearly predict
conversion from mild cognitive impairment (MCI) to
probable AD [10–14] and the presence of cerebral amyloid
in MCI to varying degrees [15], their value in preclinical dis-
ease is less well established.

One neuroimaging measure that has received less, but
growing, attention in relationship to AD is the presence of
white matter hyperintensity (WMH) volume. WMH volume
has been associated with clinical AD [16,17], cognitive
ability [18], cortical atrophy [19], and AD pathology in
cognitively normal populations [20], but no study has exam-
ined the association of WMH volume with preclinical AD in
the context of more established imaging and cognitive AD
biomarkers. Here, we compare the association of a variety
of biomarkers, including neurodegenerative, genetic, func-
tional, and cognitive biomarkers, as well as WMH volume,
with preclinical AD. This comparison sheds light on the
pathogenesis of AD and can inform subsequent studies on
longitudinal trajectories of AD biomarkers.
2. Methods

2.1. Clinical data
2.1.1. Subjects
Data used in the preparation of this article were obtained

from two publicly available data repositories: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu) and the Parkinson’s Progression Markers Initiative
(PPMI) database (www.ppmi-info.org/data). The ADNI was
launched in 2003 by the National Institute on Aging, the Na-
tional Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration, private pharmaceutical
companies and nonprofit organizations, as a $60 million, 5-
year public-private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
Alzheimer’s disease (AD). For up-to-date information on
the PPMI study, visit www.ppmi-info.org.

Data used in this article were downloaded from the ADNI
website in November 2014. We included all cognitively
normal subjects fromADNI2 and ADNI-GOwho had under-
gone florbetapir-PET scans to obtain a measure of cerebral
amyloidosis, APOE genotyping, FDG-PET, structural mag-
netic resonance (MR) imaging, and all cognitive tests exam-
ined. Only subjects with Freesurfer cortical and
hippocampal segmentations judged acceptable by the struc-
tural MR processing core were included. Inclusion criteria
for the study and diagnostic criteria for establishing disease
state were as previously reported [21]. For up-to-date infor-
mation on specific inclusion and exclusion criteria, please
see www.adni-info.org. Data were also downloaded from
the PPMI website, October 2014. Inclusion criteria for these
study data included a baseline diagnosis of cognitively
normal, a T1-weighted and Flair MRI, CSF analysis of AD
biomarkers, and APOE genotyping. For up-to-date informa-
tion on the PPMI study, visit www.ppmi-info.org.
2.2. Psychometric testing

The following measures were included in the analysis:
the mini-mental state examination [22], Rey Auditory Ver-
bal Learning Test [23], immediate and delayed recall of
the Logical Memory Test [24], the Trail Making Test [trails
A and trails B] [25], category fluency [animals [26]], and
Boston Naming Test [27]. Given the importance of memory
in prodromal AD, we examined several of the AVLT mea-
sures, which depend on differential aspects of episodic and
working memory [28]. For the present study, we analyzed
performance on the fifth immediate memory trial (AVLT
Trial 5 Recall), 5-minute and 30-minute delayed recall
(AVLT 5-min Recall, AVLT 30-min Recall), and recognition
memory discrimination (AVLT recognition discrimination).
To account for false alarms to nonstudied items, we calcu-
lated a measure of discriminability, d-prime (d’), in a stan-
dard fashion [29].

In addition to psychometric measures, we also examined
a measure of cognitive complaints via the Everyday Cogni-
tion (ECog) questionnaire [30,31], using both informant-
report and self-report data. Informants and participants are
separately queried as to the degree to which particular
everyday functioning has changed compared to 10 years
earlier. Responses for ADNI were obtained on a five-point
scale, with increasing values indicating more complaints
and 5 indicating “do not know”. The global scores were aver-
aged separately over informant-rated and self-rated scales,
excluding values of 5.
2.3. Determination of amyloid status

Florbetapir-PET was administered in accordance with
the ADNI PET protocols available online (http://adni.
loni.usc.edu/data-samples/pet), and image processing

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.ppmi-info.org/data
http://www.ppmi-info.org
http://www.adni-info.org
http://www.ppmi-info.org
http://adni.loni.usc.edu/data-samples/pet
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was performed by the ADNI core laboratory as described
previously [32]. Briefly, a PET scan was acquired 50–
70 minutes after injection of florbetapir. Images were
smoothed and aligned to an MPRAGE anatomic image
to obtain a cortical segmentation. Mean florbetapir uptake
in lateral and medial frontal, anterior and posterior cingu-
late, lateral parietal, and lateral temporal regions was
normalized to uptake in the cerebellum to obtain a mean
cortical standardized uptake value ratio (SUVr). Cortical
florbetapir uptake of �1.11 was considered “positive”
for cortical Ab [32]. APOE genotyping was performed
as described on the ADNI website (http://adni.loni.usc.
edu/data-samples/genetic-data/).
2.4. Neuroimaging biomarkers

Processing of neuroimaging data was performed by
ADNI cores and made publicly available. FDG-PET scans
were acquired and analyzed in accordance with a standard
protocol [33]. Mean FDG uptake was averaged .5 ROI’s
that are sensitive to AD-related changes in metabolism,
including right and left angular gyri, right and left inferior
temporal regions, and bilateral posterior cingulate.
Cortical thickness and hippocampal volume measurement
based on MRI scans were performed according to the
standard ADNI Freesurfer [34] processing pipeline and
downloaded from the ADNI website. Only images that
passed ADNI quality control for the temporal, occipital,
and parietal lobe were included. Cortical thickness in
the caudal portion of the middle frontal gyrus, medial
portion of the orbital frontal cortex, inferior parietal
lobule, lateral portion of the occipital cortex, inferior tem-
poral gyrus, entorhinal cortex, temporal pole, and the
isthmus of the cingulate cortex were averaged to form a
meta-ROI thought sensitive to early AD-related neurode-
generation, as previously suggested [35]. WMH volumes
were computed by the ADNI core laboratory in accor-
dance with previously published protocols [36]. Briefly,
FLAIR MR images were corrected for inhomogeneity
and warped to T1 images to provide a segmentation.
WMHs are seeded at points that are .3.5 standard devia-
tions from the mean signal in white matter, and final seg-
mentation is based on a Bayesian approach, combining
spatial priors and tissue class constraints. The WMH seg-
mentation also included segmentations of white matter,
gray matter, and CSF; the sum of the tissue volumes
was used as a surrogate for intracranial volume. For
analysis, WMH volumes were normalized to intracranial
volume and transformed using the natural logarithm.
2.5. PPMI analysis

To analyze evidence for the presence of evidence for
cerebral amyloidosis, we evaluated CSF amyloid-beta
(Ab1–42). PPMI has completed two CSF analyses, Project
101 and Project 103, and overall Ab1–42 were significantly
elevated in the latter. To maximize sample sizes, we adapted
a linear regression transformation method for CSFAb1–42 to
transform the elevated values from Project 103 to match
values from Project 101, as previously reported [37]: Trans-
formed Ab1–42 5 1.82994 1 (Ab1–42 ! 0.61562). In our
transformed CSF series, we observed that a Ab1–42 CSF
cutoff of 198 pg/mL marked the first point of deviation
from the normal distribution of Ab1–42 CSF values, so we
selected this cutoff to classify participants as being positive
or negative for CSF Ab.

We applied an automated MR image processing pipeline
for quantifying WMH volume in the PPMI cohort. The
T1-weighted scan of each subject was first preprocessed
for correction of intensity inhomogeneities [38]. A multiat-
las skull-stripping algorithm was applied using study-
specific atlases for the extraction of the brain tissue [39].
Images with quality issues, such as low T1 resolution,
were excluded from the analysis and brain masks with errors
were manually corrected. A multi-atlas label-fusion method,
which uses nonlinear registration for transferring atlas labels
to subject space, was applied to form the basis of the white
and gray matter segmentations [40,41]. Regions of WMH
were segmented using a multimodal segmentation method,
white matter lesion segmentation (WMLS), using T1-
weighted and fluid-attenuated inversion recovery (FLAIR)
images [42]. WMLS is a supervised learning method that
trains on lesions manually delineated by an expert radiolo-
gist. The lesion segmentation involves data preprocessing
via histogram standardization and co-registration, feature
extraction, training a voxelwise discriminative model, vox-
elwise label assignment, and false-positive elimination.
Quality control was performed on final volumetric data by
overlaying each subject’s lesion map on the FLAIR image.
None of the lesion masks had errors that would require
exclusion. There were minor errors, particularly in the deter-
mination of the boundaries of large lesions. However, we did
not prefer to correct them manually, as the intra-rater and
inter-rater variability associated with manual delineations
could potentially bias the results.
2.6. Statistical analysis

All statistical analyses were performed using the R pro-
gramming language, version 3.1.0. Two-tailed two-sample
t tests with unequal variances (Welch’s t test) were used to
assess differences in demographic characteristics between
WMH positive andWMH negative subjects. Logistic regres-
sion using a logit link function was used to assess the rela-
tionship between white matter hyperintensities and
presence of cerebral Ab. Stepwise forward regression was
performed to generate an ideal multivariate linear model, us-
ing the Bayesian Information Criterion to regularize the
model [43]. For all analyses, patient age, gender, and educa-
tion were used as covariates. For hippocampal volume, intra-
cranial vault volume (ICV) was used as an additional
covariate.

http://adni.loni.usc.edu/data-samples/genetic-data/
http://adni.loni.usc.edu/data-samples/genetic-data/
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3. Results

3.1. Subject demographics

A total of 184 cognitively normal subjects with
florbetapir-PET were identified from the ADNI database.
Of these, 155 subjects had complete psychometric and imag-
ing variables as described in Methods, including acceptable
cortical and hippocampal segmentations. A summary of the
demographics of the study population, including the psycho-
metric and imaging information, is given in Table 1. Ab1
subjects were slightly older (M 5 75.1, standard deviation
(SD) 5 5.7) than Ab2 subjects (M 5 72.5, SD 5 6.1),
t(100) 5 2.4, P 5 .02 and trended toward having slightly
less education (for Ab1 subjects, M 5 16 and
SD 5 2.4 years; for Ab2 subjects, M 5 17 and
SD 5 2.5 years; t(95) 5 22, P 5 .05).

3.1.1. Associative models
We computed a logistic regression relating each psycho-

metric test and modality with Ab status, while covarying
for age, gender, and education (Table 2). The logistic regres-
sion results indicated that the best univariate predictor of
cerebral Ab was APOE ε4 status, followed by white matter
hyperintensity (WMH) volume. All other imaging and
cognitive measures, including FDG-PET, hippocampal vol-
ume, ECog, and anyAVLTmeasure, were not significant pre-
dictors of Ab status. WMH volume was not increased in
APOE ε4-carrying subjects (t(85.8) 5 20.018, P 5 .99).
The independence between WMH volume and APOE geno-
type implied that bothwere independent predictors ofAb sta-
tus. This was confirmed by running a stepwise forward
Table 1

Summary of demographics, psychometric scores, and imaging data for ADNI sub

Characteristic All subjects

Number of subjects 158

Number of males 76

Age 73.5 6 6.1

Education 16.4 6 2.5

AVLT trial 5 recall 11.4 6 2.6

AVLT 5-min recall 8.8 6 3.6

AVLT 30-min recall 7.7 6 4.0

AVLT recognition discrimination 3.1 6 1.0

Trail making test A 33.3 6 10.6

Trail making test B 80.3 6 38.9

Boston naming test 28.1 6 2.3

Category fluency (animals) 21.4 6 5.5

Mini-mental status examination 29.0 6 1.3

Logical memory 14.2 6 3.0

Logical memory, delayed 13.4 6 3.1

Subject-reported ECOG score 1.3 6 0.3

Study partner–reported ECOG score 1.2 6 0.3

White-matter hyperintensity volume (mm3) 3084 (1789–5657)

Mean FDG-PET SUVR of AD meta-ROI 1.3 6 0.1

Hippocampal volume 3754.7 6 451.7

Mean cortical thickness of AD meta-ROI 2.7 6 0.1

Number (percent) of APOE ε4 positive 47 (30%)

Values are reported as mean 6 standard deviation except for white-matter hyp
multivariate regression model, which selected only WMH
volume and APOE status as independent predictors. A box-
plot comparing WMH volumes in Ab1 and Ab2 subjects
is shown in Fig. 1. There was no significant association be-
tweenWMHand either t or t/Ab ratio (P5.56 and .09, n.s.).

3.1.2. Replication in PPMI data
Owing to conflicting results in prior studies about the link

between WMH volume and Ab pathology, we sought to
replicate correlation between WMH volume and Ab pathol-
ogy with elderly controls from the Parkinson’s progression
markers initiative. We identified 240 subjects with FLAIR
and T1 images. A total of 207 images passed manual quality
control; of these, 58 were control subjects. Log WMH
volume normalized to ICV was not associated with age
(r5 0.12,P5.37) or gender (t(38)521.6,P5.12). A sum-
mary of the demographics of the study population is given in
Table 3. In contrast to the ADNI cohort, WMH volume was
significantly increased in APOE ε4 carriers (t(24) 5 2.3,
P5 .03). After correcting for age and gender, WMH volume
was significantly predictive of Ab status (b estimate
1.126 0.57, z5 1.97, P5 .048), even given the limited sam-
ple size. A boxplot showing WMH volumes in the PPMI
cohort is shown in Fig. 2. However, in the PPMI cohort, a
stepwise forward regression model included only APOE ε4
status as a predictor of Ab and did not include WMH.
4. Discussion

This study represents the first comprehensive compara-
tive evaluation of a variety of biomarkers to predict
jects.

Ab1 Ab2

49 109

17 59

75.1 6 5.7 72.7 6 6.2

15.9 6 2.4 16.7 6 2.5

11.2 6 2.8 11.5 6 2.5

7.9 6 3.5 9.3 6 3.6

7.1 6 3.6 7.9 6 4.2

3.1 6 1.0 3.2 6 1.0

35.7 6 10.4 32.2 6 10.5

84.7 6 36.7 78.3 6 39.9

28.1 6 2.0 28.2 6 2.4

21.7 6 4.8 21.2 6 5.8

29.0 6 1.0 28.9 6 1.4

14.0 6 3.3 14.3 6 2.8

13.1 6 2.9 13.5 6 3.2

1.3 6 0.3 1.3 6 0.3

1.1 6 0.2 1.2 6 0.3

4836 (3133–7861) 2644 (1402–4864)

1.3 6 0.1 1.3 6 0.1

3640.2 6 432.4 3806.2 6 452.6

2.7 6 0.1 2.7 6 0.1

23 (47%) 24 (22%)

erintensities, which are reported as median and interquartile ranges.



Table 2

Summary of univariate logistic regressions predicting Ab status from each

psychometric test and imaging biomarker for ADNI subjects.

Variable

Standardized

b estimate

Standard

error z value

P

value

AVLT trial 5 recall 20.09 0.17 20.53 .60

AVLT 5-min recall 20.29 0.18 21.63 .10

AVLT 30-min recall 20.17 0.17 20.95 .34

Trail making test A 0.19 0.17 1.14 .26

Trail making test B 0.04 0.17 0.21 .83

Boston naming test 0.05 0.18 0.29 .77

Category fluency (animals) 0.24 0.18 1.34 .18

Mini-mental status

examination

0.08 0.18 0.47 .64

Discrimination 20.01 0.17 20.08 .94

Logical memory 20.02 0.17 20.11 .91

Logical memory, delayed 20.13 0.17 20.74 .46

Subject-reported ECOG

score

20.10 0.18 20.58 .56

Study partner–reported

ECOG score

20.17 0.20 20.85 .40

Log white-matter

hyperintensity volume

0.44 0.20 2.19 .028*

Mean FDG-PET SUVR of

AD meta-ROI

20.18 0.17 20.77 .44

Hippocampal volume 20.13 0.17 20.77 .44

Mean cortical thickness of

AD meta-ROI

0.01 0.17 0.07 .94

APOE ε4 status 1.25 0.40 3.15 .002**

Age, gender, and education level (in years) were included as covariates.

All data were scaled before regression to facilitate inspection of regression

coefficients. The only variables significant at the P 5 .05 level were APOE

status and log white-matter hyperintensity volume.

*P ,.05.
**P ,.005.
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presence of preclinical AD pathology in a cognitively
normal population. In particular, the surprising finding
that WMHs are more highly correlated with AD pathol-
ogy than any of the standard AD imaging biomarkers or
cognitive tests suggests that in the earliest stages of AD,
vascular disease, as reflected by WMH, may play a signif-
icant role in the development of cerebral amyloidosis or
be an early downstream effect of this molecular pathol-
−2

0

2

4

Negative (SUVR < 1.11)
Aβ

W
M

H

Log White Matter Hyperintensi

Fig. 1. Boxplots comparing white matter hyperintensity volumes for the ADNI co

had significantly higher WMH volumes than Ab2 subjects.
ogy. The replication of this result in an independent data
set, using different image processing techniques, points
to the robustness of the finding. The salient association
of WMH with preclinical AD supports earlier studies
[44–46] that have demonstrated a link between WMH
and cognitive decline at this stage [44]. The strength of
this association is in contrast to conventional thinking
about this disease stage which assumes that biomarkers
and, perhaps, subtle cognitive symptoms traditionally
used to characterize MCI due to AD and probable AD
are the same ones that would characterize preclinical
AD [3,47]. Indeed, AD biomarker cascade models do
not generally include a measure of white matter integrity.
4.1. White matter hyperintensities and amyloid

The degree of association between WMH volume and am-
yloid deposition in nondemented control subjects is controver-
sial. Some studies have not found a link between
WMH volume or other vascular disease markers and amyloid
[48–52], whereas other studies, including a large (n 5 337)
Amsterdam study [20,53,54], have reported such a correla-
tion. It is possible that differences in WMH calculation, such
as WM histogram normalization, thresholds for defining
WMH, and the incorporation of priors for segmenting
WMHs, may at least partially account for these
discrepancies. Standardization and rigorous comparison of
competing methods for evaluating WMH volume may help
to reduce the variation in results. Differential involvement of
periventricular and subcortical WMH may also contribute to
differing study results [55], although the relative importance
of WMH anatomic distribution as compared to total WMH
volume is still a matter of debate [36].

The relationship of cerebrovascular disease to clinical
AD and amyloid pathology is likely complex, and an
evolving understanding is emerging [56,57], but there are
clear links between the severity of cerebrovascular disease
and the risk of clinical dementia associated with AD
pathology [58]. There are a number of overlapping risk fac-
tors for cerebrovascular disease and WMH with AD,
Positive (SUVR ≥ 1.11)

ty Volume vs. Aβ Status, ADNI

hort, normalized to intracranial volume, and log transformed. Ab1 subjects



Table 3

Summary of PPMI cohort demographics

Characteristic

All subjects

(mean 6 standard

deviation) Ab1 Ab2

Number of subjects 58 12 46

Number of males 35 7 28

Age (y) 60 6 13 62 6 18 60 6 11

Number of APOE ε4

carriers

12 5 7

White-matter lesion

volume (mm3)

2654 6 5757 4757 6 7509 2105 6 5168
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including hypertension, diabetes, obesity, and tobacco use.
For example, poorly controlled hypertension has been found
to correlate with amyloid plaque pathology [59], and circle
ofWillis atherosclerosis is more highly related to AD pathol-
ogy than other common proteinopathies [60,61]. Other work
has related blood pressure and systemic arterial stiffness,
also associated with WMH, to amyloid burden measured
by amyloid imaging [62,63]. We did not observe
statistically significant differences between mean arterial
pressure, systolic, and diastolic blood pressure, body mass
index, or history of cardiovascular disease, hypertension,
or smoking between Ab1 and Ab2 subjects in the ADNI
cohort. Although we did not have complete medical
histories of all subjects in the PPMI cohort, we did not
observe differences in blood pressure between Ab1 and
Ab2 subjects in the PPMI cohort either.

Whether these are common risk factors with dissociable
associations or are more directly mechanistically related is
unclear. WMH volume may be a marker of cerebral amyloid
due to the increased likelihood of deposition of amyloid in
vessel walls leading to development of cerebral amyloid an-
giopathy [64]. Alternatively, there are a number of potential
mechanisms by which cerebrovascular changes may directly
relate to deposition of cerebral amyloid. For example, Ab
clearance may depend of the perivascular “glymphatic” sys-
tem which is diminished by reduced arterial pulsatility or
0.0

2.5

5.0

7.5

10.0

Negative (Aβ ≥ 198 pg/ml)
Aβ

W
M

H

Log White Matter Hyperintensity (

Fig. 2. Boxplots comparing log white matter hyperintensity volumes for the PPM

ADNI cohort, Ab1 subjects had significantly higher WMH volumes than Ab2 s
stiffness [65]. Furthermore, a number of factors associated
with cerebrovascular alterations, including hypoperfusion,
may accelerate Ab production [66]. An enhanced under-
standing of these linkages may provide vascular specific
therapeutic options at presymptomatic stages.

4.2. Independent association of white matter
hyperintensities and APOE status with cerebral amyloid

The finding that WMH and APOE ε4 carrier status are
both independently associated with amyloid, and that
WMH volume is not associated with APOE implies that
vascular burden increases the risk for cerebral amyloid
over and above this highly significant genetic risk. This
finding is in consonance with other studies that have shown
that WMH volume is an independent risk factor for incident
dementia [67], although not all studies have supported this
result [52]. The independence of these factors is particularly
interesting given the relationship of APOEwith cardiovascu-
lar risk [68,69]. Nonetheless, it is worth noting that we did
not observe the same dissociation in the PPMI data set,
although this could be due in part to an issue of power.

4.3. Lack of relationship with traditional AD
neurodegenerative biomarkers and cognitive measures

The current findings did not support the role of neuroimag-
ing biomarkers that have more traditionally been associated
with AD in the prodromal and dementia stages of disease,
including hippocampal volumes, cortical thickness, and
FDG-PET. Although some prior studies have found associa-
tions between cortical thinning or volume changes and amy-
loid status in cognitively normal individuals [70–74], this has
not been a consistent finding [75]. The differences in results
may be due to methodologic differences, with some studies
using rate of atrophy and others cross-sectional measures.
The observed inconsistency may also be due to the heteroge-
neity among the proposed “stages” of preclinical AD, which
include a spectrum of neurodegeneration and cognitive
Positive (Aβ < 198 pg/ml)

WMH) Volume vs. Aβ Status, PPMI

I cohort, normalized to intracranial volume and log transformed. As in the

ubjects.
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change [3]. This also may explain why in some instances
cognitive measures have also been reported to be associated
with preclinical AD [8,76,77]. It is worth pointing out that
while not significant, hippocampal volume was smaller and
5-minute delayed recall on the AVLTwas poorer in the group
with evidence of cerebral amyloid. Finally, despite work
suggesting a link between subjective complaints and amyloid
status [7], we did not find either the patient or informant-
based ECog of value for predicting preclinical AD; this
finding resonates with results from a recent meta-analysis
of amyloid status in cognitively normal adults with and
without subjective symptoms [5].

Although small vessel disease is typically associated with
executive dysfunction, we did not observe an association be-
tween executive function andWMH volume. This lack of as-
sociation may be because we studied only cognitively
normal subjects, so the variance in cognitive ability is
relatively limited. It also may be the case that white matter
findings associated with cerebral amyloid do not have the
same impact on executive function as those unassociated
with amyloid and instead accompanied by more pervasive
cerebrovascular disease.
4.4. Limitations

Our study is limited by the cross-sectional nature of the
data, and a longitudinal study looking at the relative timing
of the development of WMH and cerebral amyloid would be
informative of the direction of causality in this relationship.
The characteristics of the ADNI cohort may impact the
generalizability of the findings. The ADNI cohort is racially
and socioeconomically homogeneous and is relatively free
of cardiovascular disease and other comorbidities. It is un-
certain whether the relationship between WMH and Ab
would be strengthened or weakened in a more heterogeneous
cohort with more prevalent cardiovascular pathology. In
addition, the lack of standardization both of FLAIR imaging
methods, including resolution and WMH quantification
techniques makes comparisons of different populations diffi-
cult. The clinical applicability of WMH quantification
would be greatly enhanced by a standardized measurement
method. Additional replication in other cohorts would
bolster confidence in the observed association. Although
manual quality control was performed on all hippocampal
and WMH segmentations to avoid major failures, it is
possible that minor errors affected the results. Finally,
although cerebral Ab has been adopted as the defining
feature of preclinical AD, the lack of complete longitudinal
data on ADNI 2/GO precludes any definitive conclusion on
the impact of WMH on developing clinical AD in the future.
5. Conclusion

In our samples of cognitively normal controls, white mat-
ter hyperintensities (WMHs) are more highly associated
with biomarker evidence of cerebral Ab than any other
recognized biomarker or cognitive test. This finding chal-
lenges the assumption that biomarkers of neurodegenera-
tion, which are well established in later stages of disease,
are reliably sensitive at the preclinical stage. As the preclin-
ical stage of AD is increasingly recognized as a period of
primary importance for preventing and ameliorating incip-
ient neurodegeneration, the importance of accurately under-
standing correlates of AD pathology at this stage similarly
increases. At the same time, the biological mechanism of
the correlation between Ab and WMH is not clear. A more
thorough understanding of the nature of the relationship
between Ab and WMH is necessary to establish potential
targets for disease-modifying interventions. Nevertheless,
it is clear that WMH should be considered as a potential
biomarker for preclinical AD in addition to more widely
used cognitive tests and imaging biomarkers.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the literature using
PubMed and Google Scholar searches, as well as
meeting abstracts and presentations. There has been
an increasing interest in the contribution of vascular
disease to Alzheimer’s Disease in general, and
several recent studies have specifically looked at
white matter hyperintensity (WMH) volume in the
context of preclinical Alzheimer’s disease. These
studies are referenced.

2. Interpretation: We found that WMH volume is more
highly associated with preclinical Alzheimer’s dis-
ease than any conventional biomarker. This finding
supports the notion that vascular disease, as marked
by WMH, is associated with cerebral amyloid depo-
sition at early disease phases, perhaps preceding
other downstream neurodegenerative changes.

3. Future directions: This work raises several questions
for future research. First, although WMH volume is
an important marker of small vessel disease, there
may be other markers of vascular health that are
more sensitive to preclinical Alzheimer’s. Second,
and most importantly, the direction of causality be-
tween cerebrovascular disease and amyloid deposi-
tion is uncertain and deserves intensive study given
implications for potential preventative interventions.
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